Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
1.
JCI Insight ; 8(10)2023 05 22.
Article in English | MEDLINE | ID: covidwho-2294102

ABSTRACT

Viral illnesses like SARS-CoV-2 have pathologic effects on nonrespiratory organs in the absence of direct viral infection. We injected mice with cocktails of rodent equivalents of human cytokine storms resulting from SARS-CoV-2/COVID-19 or rhinovirus common cold infection. At low doses, COVID-19 cocktails induced glomerular injury and albuminuria in zinc fingers and homeoboxes 2 (Zhx2) hypomorph and Zhx2+/+ mice to mimic COVID-19-related proteinuria. Common Cold cocktail induced albuminuria selectively in Zhx2 hypomorph mice to model relapse of minimal change disease, which improved after depletion of TNF-α, soluble IL-4Rα, or IL-6. The Zhx2 hypomorph state increased cell membrane to nuclear migration of podocyte ZHX proteins in vivo (both cocktails) and lowered phosphorylated STAT6 activation (COVID-19 cocktail) in vitro. At higher doses, COVID-19 cocktails induced acute heart injury, myocarditis, pericarditis, acute liver injury, acute kidney injury, and high mortality in Zhx2+/+ mice, whereas Zhx2 hypomorph mice were relatively protected, due in part to early, asynchronous activation of STAT5 and STAT6 pathways in these organs. Dual depletion of cytokine combinations of TNF-α with IL-2, IL-13, or IL-4 in Zhx2+/+ mice reduced multiorgan injury and eliminated mortality. Using genome sequencing and CRISPR/Cas9, an insertion upstream of ZHX2 was identified as a cause of the human ZHX2 hypomorph state.


Subject(s)
COVID-19 , Common Cold , Humans , Mice , Animals , Homeodomain Proteins/genetics , Albuminuria , Tumor Necrosis Factor-alpha , Cytokine Release Syndrome , SARS-CoV-2/metabolism , Transcription Factors/genetics
2.
Clin Nephrol ; 98(4): 205-208, 2022 Oct.
Article in English | MEDLINE | ID: covidwho-1964358

ABSTRACT

Fibrillary glomerulonephritis (FGN) is a rare glomerular disease manifesting with proteinuria, renal impairment, hematuria, hypertension, and in a very small proportion can be associated with rapidly progressive glomerulonephritis and, rarely, crescent formation. The main modality for diagnosis is kidney biopsy, which ultrastructurally demonstrates randomly arranged non-branching mesangial and glomerular basement membrane (GBM) fibrils and positive staining for the biomarker DNAJB9. The pathogenesis is largely unknown. It was previously hypothesized to represent an immune-complex-type glomerulonephritis, as most cases show IgG4 restriction. We present the first case of crescentic FGN after mRNA Pfizer vaccine for COVID-19. A strong temporal association between vaccination, elevated creatinine, and diffuse crescentic fibrillary process was found. Immunological, neoplastic, and infectious causes were ruled out. We hypothesized that the vaccine stimulated an immune response that triggered crescentic FGN, however, further investigations will be needed to elucidate the direct role of COVID-19 vaccination in crescentic glomerular disease.


Subject(s)
Acute Kidney Injury , COVID-19 , Glomerulonephritis, Membranoproliferative , Glomerulonephritis , Acute Kidney Injury/etiology , Acute Kidney Injury/pathology , Biomarkers , Biopsy , COVID-19/complications , COVID-19/prevention & control , COVID-19 Vaccines/adverse effects , Creatinine , Glomerular Basement Membrane/pathology , Glomerulonephritis/diagnosis , Glomerulonephritis, Membranoproliferative/pathology , HSP40 Heat-Shock Proteins , Humans , Immunoglobulin G , Membrane Proteins , Molecular Chaperones , RNA, Messenger
SELECTION OF CITATIONS
SEARCH DETAIL